Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis.

نویسندگان

  • Hao-Ming Fang
  • Yue Wang
چکیده

A peptide motif Glu-Xaa-Xaa-Glu has been implicated in direct binding of ferric iron in several proteins involved in iron transport, sensing or storage. However, it is not known whether the motif alone is sufficient for iron binding and whether functional replacement of the conserved residues by other amino acids with similar properties is possible. We previously identified a Candida albicans iron permease, CaFtr1p, which contains five Glu-Xaa-Xaa-Glu motifs [Ramanan and Wang (2000) Science 288, 1062-1065]. In this study, we investigated the role of each of these motifs in iron uptake by site-directed mutagenesis. Substitution of Ala for any one of the two Glu residues in Glu-Gly-Leu-Glu(158-161) abolished iron-uptake activity, while the same substitution in any of the other four motifs had little effect, indicating that only the motif at position 158-161 is required for iron transport. We then evaluated the importance of each of the residues within and immediately adjacent to this motif in iron uptake. The permease remained active when any one of the Glu residues was replaced by Asp, while it became inactive when both were replaced. We also found that the amino acid immediately in front of Glu-Gly-Leu-Glu(158-161) must be either Arg or Lys. In addition, substitution of any of the two residues in the middle with several structurally distinct amino acids had no detectable effect on iron uptake. Here we propose to extend the iron-binding motif to Arg/Lys-Glu/Asp-Xaa-Xaa-Glu or Arg/Lys-Glu-Xaa-Xaa-Glu/Asp, which may serve as a guide for the identification of potential iron-binding sites in proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.

Host-pathogen interactions that alter virulence are influenced by critical nutrients such as iron. In humans, free iron is unavailable, being present only in high-affinity iron binding proteins such as transferrin. The fungal pathogen Candida albicans grows as a saprophyte on mucosal surfaces. Occasionally it invades systemically, and in this circumstance it will encounter transferrin iron. Her...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

Differences in the RNA binding sites of iron regulatory proteins and potential target diversity.

Posttranscriptional regulation of genes of mammalian iron metabolism is mediated by the interaction of iron regulatory proteins (IRPs) with RNA stem-loop sequence elements known as iron-responsive elements (IREs). There are two identified IRPs, IRP1 and IRP2, each of which binds consensus IREs present in eukaryotic transcripts with equal affinity. Site-directed mutagenesis of IRP1 and IRP2 reve...

متن کامل

Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae.

The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-compe...

متن کامل

Structure-Function Relationships of the Mycobacterium tuberculosis Transcription Factor WhiB1

BACKGROUND Members of the WhiB-like (Wbl) protein family possess iron-sulfur clusters and are implicated in the regulation of developmental processes in Actinomycetes. Mycobacterium tuberculosis possesses seven Wbl proteins. The [4Fe-4S] cluster of M. tuberculosis WhiB1 is relatively insensitive to O(2) but very sensitive to nitric oxide (NO). Nitric oxide nitrosylates the WhiB1 iron-sulfur clu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 368 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002